SAM Centrality: a Hop-Based Centrality Measure for Ranking Users in Social Network
نویسندگان
چکیده
منابع مشابه
Path Centrality: A New Centrality Measure in Social Networks
Processing large graphs is an emerging and increasingly important computation in a variety of application domains, from social networking to genomics and marketing. One of the important and computationally challenging structural graph metrics is node betweenness centrality, a measure of influence of a node in the graph. The best known algorithm for computing exact betweenness centrality runs in...
متن کاملCentrality based Document Ranking
In this paper, we address the problem of ranking clinical documents using centrality based approach. We model the documents to be ranked as nodes in a graph and place edges between documents based on their similarity. Given a query, we compute similarity of the query with respect to every document in the graph. Based on these similarity values, documents are ranked for a given query. Initially,...
متن کاملLobby index as a network centrality measure
We study the lobby index ( l for short) as a local node centrality measure for complex networks. The l is compared with degree (a local measure), betweenness and Eigenvector centralities (two global measures) in the case of a biological network (Yeast interaction protein-protein network) and a linguistic network (Moby Thesaurus II ). In both networks, the l has poor correlation with betweenness...
متن کاملHirsch index as a network centrality measure
We study the h Hirsch index as a local node centrality measure for complex networks in general. The h index is compared with the Degree centrality (a local measure), the Betweenness and Eigenvector centralities (two non-local measures) in the case of a biological network (Yeast interaction protein-protein network) and a linguistic network (Moby Thesaurus II). In both networks, the Hirsch index ...
متن کاملLaplacian centrality: A new centrality measure for weighted networks
The centrality of vertices has been a key issue in network analysis. For unweighted networks where edges are just present or absent and have no weight attached, many centrality measures have been presented, such as degree, betweenness, closeness, eigenvector and subgraph centrality. There has been a growing need to design centrality measures for weighted networks, because weighted networks wher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EAI Endorsed Transactions on Industrial Networks and Intelligent Systems
سال: 2020
ISSN: 2410-0218
DOI: 10.4108/eai.13-7-2018.163985